top of page

Parasites and Climate Change

  • Altizer S, Ostfeld R, Johnson P, Kutz S, Harvell C, 2013. Climate change and infectious diseases: From evidence to a predictive framework. Science 341: 514-519.

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution 19 (10): 535-544.

  • Atkinson CT, LaPointe DA, 2009. Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. Journal of Avian Medicine and Surgery 23: 53-63.

  • Bouma MJ, Sondorp HE, van der Kay HJ, 1994. Climate change and periodic epidemic malaria. Lancet 343: 1440.    

  • Brooks DR, Hoberg EP, 2007. How will global climate change affect parasite–host assemblages? Trends in Parasitology 23 (12): 571-574.

  • Brooks DR, Hoberg EP, Boeger WA, Gardner SL, Galbreath KE, Herczeg D, Mejía-Madrid HH, Rácz SE, Dursahinhan AT, 2014. Finding them before they find us: informatics, parasites, and environments in accelerating climate change. Comparative Parasitology 81 (2): 155-164.

  • Garamszegi LZ, 2011. Climate change increases the risk of malaria in birds. Global Change Biology 17: 1751-1759.

  • Hoberg EP, Brooks DR, 2015. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philosophical Transactions of the Royal Society B 370 (1665): 20130553.

  • Kutz SJ, Hoberg EP, Molnár PK, Dobson A, Verocai GG, 2014. A walk on the tundra: host–parasite interactions in an extreme environment. International Journal for Parasitology: Parasites and Wildlife 3 (2): 198-208.

  • Kutz SJ, Jenkins EJ, Veitch AM, Ducrocq J, Polley L, Elkin B, Lair S, 2009. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Veterinary Parasitology 163 (3): 217-228.

  • Martens WJ, Niessen LW, Rotmans J, Jetten TH, McMichael AJ, 1995. Potential impact of global climate change on malaria risk. Environmental Health Perspectives 103(5): 458.

  • Martínez J, Merino S, 2011. Host-parasite interactions under extreme climatic conditions. Current Zoology 57: 390-405.

  • Meléndez L, Laiolo P, Mironov S, García M, Magaña O, Jovani R, 2014. Climate-driven variation in the intensity of a host-symbiont animal interaction along a broad elevation gradient. PLoS One 9: e101942.

  • Megía-Palma R, Arregui L, Pozo I, Zagar A, Serén N, Carretero MA, Merino S, 2020. Geographic patterns of stress in insular lizards reveal anthropogenic and climatic signatures. Science of the Total Environment 749: 141655.

  • Megía-Palma R, Barja I, Barrientos R, 2022. Fecal glucocorticoid metabolites and ectoparasites as biomarkers of heat stress close to roads in a Mediterranean lizard. Science of the Total Environment 802: 149919.

  • Møller AP, Merino S, Soler JJ, Antonov A, Badás EP, Calero-Torralbo MA, de Lpe F, Eeva T, Figuerola J, Flensted-Jensen E, Garamszegi LZ, González-Braojos S, Gwinner H, Hanssen SA, Heylen D, Ilmonen P, Klarborg K, Korpimäki E, Martínez J, Martínez de la Puente J, Marzal A, Matthysen E, Matyjaslak P, Molina-Morales M, Moreno J, Mousseau TA, Nielsen JT, Pap PL, Rivero-de Aguilar J, Shurulinkov P, Slagsvold T, Szép T, Szöllösi E, Török J, Vaclav R, Valera F, Ziane N, 2013. Assessing the effects of climate on host-parasite interactions: a comparative study of European birds and their parasites. PLoS One 8: e82886.

  • Patz JA, Epstein PR, Burke TA, Balbus JM, 1996. Global climate change and emerging infectious diseases. Jama 275 (3): 217-223.

  • Polley L, Thompson RA, 2009. Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries. Trends in Parasitology 25 (6): 285-291.

  • Poisot T, Guéveneux-Julien C, Fortin M-J, Gravel D, Legendre P, 2017. Hosts, parasites and their interactions respond to different climatic variables. Global Ecology and Biogeography 26: 942-951.

  • Pounds JA, Fogden MP, Campbell JH, 1999. Biological response to climate change on a tropical mountain. Nature 398 (6728): 611-615.

  • Rózsa L, Tryjanowski P, Vas Z, 2015. Under the changing climate: how shifting geographic distribution and sexual selection shape parasite diversification. In: Morand S, Krasnov B, Littlewood T, editors. Parasite diversity and diversification: evolutionary ecology meets phylogenetics. Cambridge (UK): Cambridge University Press, 58-76.

  • Tanser FC, Sharp B, Le Sueur D, 2003. Potential effect of climate change on malaria transmission in Africa. The Lancet 362 (9398): 1792-1798.

 

Hamilton-Zuk’s hypothesis in lizards

  • Hamilton WD, Zuk M, 1982. Heritable true fitness and bright birds: a role for parasites? Science 218: 384-387.

  • Lefcort H, Blaustein AR, 1991. Parasite load and brightness in lizards: an intraspecific test of the Hamilton and Zuk hypothesis. Journal of Zoology 224: 491-499.

  • Lindsay WR, Wapstra E, Silverin B, Olsson M, 2016. Corticosterone: a costly mediator of signal honesty in sand lizards. Ecology and Evolution 6 (20): 7451-7461.

  • Llanos-Garrido A, Díaz JA, Pérez-Rodríguez A, Arriero E (2017) Variation in male ornaments in two lizard populations with contrasting parasite load. Journal of Zoology doi: 10.1111/jzo.12478.

  • Martín J, Amo L, López P, 2008. Parasites and health affect multiple sexual signals in male common wall lizards, Podarcis muralis. Naturwissenschaften 95: 293-300.

  • Megía-Palma, R., Barrientos, R., Gallardo, M., Martínez, J., Merino, S. (2021). Brighter is darker: the Hamilton-Zuk hypothesis revisited in lizards. Biological Journal of the Linnean Society DOI: 10.1093/biolinnean/blab081.

  • Megía-Palma R, Martínez J, Merino S, 2016. A structural colour ornament correlates positively with parasite load and body condition in an insular lizard species. The Science of Nature 103: 1-10.

  • Megía-Palma R, Martínez J, Merino S, 2016. Structural- and carotenoid-based throat color patches in males of Lacerta schreiberi reflect different parasitic diseases. Behavioral Ecology and Sociobiology 70: 2017-2025.

  • Megía-Palma R, Martínez J, Merino S (2017) Manipulation of parasite load induces significant changes in the structural-based throat color of male Iberian green lizards. Current Zoology 53:205–214. doi: 10.1093/cz/zox036.

  • Megía-Palma R, Paranjpe D, Reguera S, Martínez J, Cooper RD, Blaimont P, Merino S, Sinervo B, 2018. Multiple color patches and parasites in Sceloporus occidentalis: Differential relationships by sex and infection. Current Zoology https://doi.org/10.1093/cz/zoy007 

  • Molnár O, Bajer K, Mészáros B, Török J, Herczeg G, 2013. Negative correlation between nuptial throat colour and blood parasite load in male European green lizard supports the Hamilton-Zuk hypothesis. Naturwissenschaften 100: 551-558.

  • Ressel S, Schall JJ, 1989. Parasites and showy males: malarial infection and color variation in fence lizards. Oecologia 78: 158-164.

  • Schall JJ, 1986. Prevalence and virulence of a haemogregarine parasite of the Aruban whiptail lizard, Cnemidophorus arubensis. Journal of Herpetology 20 (3): 318-324.

  • Schall JJ, Staats CM, 1997. Parasites and the evolution of extravagant male characters: Anolis lizards on Caribbean islands as a test of the Hamilton-Zuk hypothesis. Oecologia 111 (4): 543-548.

  • Stuart-Fox D, Godinho R, de Bellocq JG, Irwin NR, Brito JC, Moussalli A, Široký P, Hugall AF, Baird SJE, 2009. Variation in phenotype, parasite load and male competitive ability across a cryptic hybrid zone. Plos One 4: e5677.

  • Václav R, Prokop P, Fekiač V, 2007. Expression of breeding coloration in European Green Lizards (Lacerta viridis): variation with morphology and tick infestation. Canadian Journal of Zoology 85: 1199-1206.

 

Evolution and molecular systematics of parasitic protozoa of lizards

  • Haklová-Kočíková B, Hižňanová A, Majláth I, Račka K, Harris DJ, Földvári G, Tryjanowski P, Kokošová N, Malčeková B, Majláthová V, 2014. Morphological and molecular characterization of Karyolysus – a neglected but common parasite infecting some European lizards. Parasites & Vectors 7: 1-12.

  • Harris DJ, Borges-Nojosa DM, Maia JP, 2015. Prevalence and diversity of Hepatozoon in native and exotic geckos from Brazil. Journal of Parasitology 101(1): 80-85.

  • Harris DJ, Maia JP, Perera A, 2011. Molecular characterization of Hepatozoon species in reptiles from the Seychelles. Journal of Parasitology 97 (1): 106-110.

  • Harris DJ, Maia JP, Perera A, 2012. Molecular survey of Apicomplexa in Podarcis wall lizards detects Hepatozoon, Sarcocystis, and Eimeria species. Journal of Parasitology 98 (3): 592-597.

  • Jirků M, Modrý M, Šlapeta JR, Koudela B, Lukeš J, 2002. The phylogeny of Goussia and Choleoeimeria (Apicomplexa: Eimeriorina) and the evolution of excystation structures in coccidia. Protist 153: 379-390.

  • Karadjian G, Chavatte J-M, Landau I, 2015. Systematic revision of the adeleid haemogregarines, with creation of Bartazoon n.g., reassignment of Hepatozoon argantis Garnham, 1954 to Hemolivia, and molecular data on Hemolivia stellata. Parasite 22: 31.

  • Maia JP, Crottini A, Harris DJ, 2014. Microscopic and molecular characterization of Hepatozoon domerguei (Apicomplexa) and Foleyella furcata (Nematoda) in wild endemic reptiles from Madagascar. Parasite 21.

  • Maia JP, Harris DJ, Carranza S, 2016. Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman. Parasitology International 65 (1): 5-11.

  • Maia JP, Harris DJ, Carranza S, Gómez-Díaz E, 2016. Assessing the diversity, host-specificity and infection patterns of apicomplexan parasites in reptiles from Oman, Arabia. Parasitology 143: 1730-1747.

  • Maia JPM, Harris DJ, Perera CA, 2011. Molecular survey of Hepatozoon species in lizards from North Africa. Journal of Parasitology 97: 513-517.

  • Maia JPMC, Perera A, Harris DJ, 2012. Molecular survey and microscopic examination of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) in lacertid lizards from the western Mediterranean. Folia Parasitologica 59: 241-248.

  • Megía-Palma R, Martínez J, Acevedo I, Martín J, García-roa R, Ortega J, Peso-fernández M, Albaladejo G, Cooper R, Paranjpe DA, Sinervo B, Merino S, 2015. Phylogeny of the reptilian Eimeria: are Choleoeimeria and Acroeimeria valid generic names? Zoologica Scripta 44 (6): 684-692.

  • Megía-Palma R, Martínez J, Merino S, 2013. Phylogenetic analysis based on 18S rRNA gene sequences of Schellackia parasites (Apicomplexa: Lankesterellidae) reveals their close relationship to the genus Eimeria. Parasitology 140: 1149-1157.

  • Megía-Palma R, Martínez J, Merino S, 2014. Molecular characterization of haemococcidia genus Schellackia (Apicomplexa) reveals the polyphyletic origin of the family Lankesterellidae. Zoologica Scripta 43: 304-312.

  • Megía-Palma R, Martínez J, Nasri I, Cuervo JJ, Martín J, Acevedo I, Belliure J, Ortega J, García-Roa R, Selmi S, Merino S, 2016. Phylogenetic relationships of Isospora, Lankesterella, and Caryospora species (Apicomplexa: Eimeriidae) infecting lizards. Organisms, Diversity and Evolution 16:275-288.

  • Megía-Palma R, Martínez J, Paranjpe D, D’Amico V, Aguilar R, Palacios MG, Cooper R, Ferri-Yáñez F, Sinervo B, Merino S, 2017. Phylogenetic analyses reveal that Schellackia parasites (Apicomplexa) detected in American lizards are closely related to the genus Lankesterella: is the range of Schellackia restricted to Old World? Parasites & Vectors 10: 470.

  • Ogedengbe ME, El-Sherry S, Ogedengbe JD, Chapman HD, Barta JR, 2017. Phylogenies based on combined mitochondrial and nuclear sequences conflict with morphologically defined genera in the eimeriid coccidian (Apicomplexa). International Journal for Parasitology doi 10.1016/j.ijpara.2017.07.008.

  • Perkins SL, 2000. Species concepts and malaria parasites: detecting a cryptic species of Plasmodium. Proceedings of the Royal Society of London B: Biological Sciences 267 (1459): 2345-2350.

  • Perkins SL, 2001. Phylogeography of Caribbean lizard malaria: tracing the history of vector‐borne parasites. Journal of Evolutionary Biology 14 (1): 34-45.

  • Telford SRJr, 2008. Hemoparasites of the Reptilia. Color Atlas and Text. CRC Press, Boca Raton, FL.

  • Vilcins IME, Ujvari B, Old JM, Deane E, 2009. Molecular and morphological description of a Hepatozoon species in reptiles and their ticks in the Northern territory, Australia. Journal of Parasitology 95 (2): 434-442.

  • Yang R, Brice B, Ryan U, 2016. Morphological and molecular characterization of Choleoeimeria pogonae n.sp. coccidian parasite (Apicomplexa: Eimeriidae, 1989, Paperna and Landsberg) in a western bearded dragon (Pogona minor minor). Experimental Parasitology 160: 11-16.

 

Parasite co-evolution with lizard hosts

  • Doležel D, Koudela B, Jirků M, Hypša V, Oborník M, Votýpka J, Modrý D, Šlapeta JR, Lukeš J, 1999. Phylogenetic analysis of Sarcocystis spp. of mammals and reptiles supports the coevolution of Sarcocystis spp. with their final hosts. International Journal for Parasitology 29: 795-798.

  • Megía-Palma R, Martínez J, Cuervo JJ, Belliure J, Jiménez-Robles O, Gomes V, Cabido C, Pausas JG, Fitze PS, Martín J, Merino S., 2018. Molecular evidence for host-parasite co-speciation between lizards and Schellackia parasites. International Journal for Parasitology 48: 709-718.

 

 

Just in case I forgot something, please, contact me.

bottom of page